Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1.
نویسندگان
چکیده
While the number of available recombinant Baeyer-Villiger monooxygenases (BVMOs) has grown significantly over the last few years, there is still the demand for other BVMOs to expand the biocatalytic diversity. Most BVMOs that have been described are dedicated to convert efficiently cyclohexanone and related cyclic aliphatic ketones. To cover a broader range of substrate types and enantio- and/or regioselectivities, new BVMOs have to be discovered. The gene encoding a BVMO identified in Pseudomonas putida JD1 converting aromatic ketones (HAPMO; 4-hydroxyacetophenone monooxygenase) was amplified from genomic DNA using SiteFinding-PCR, cloned, and functionally expressed in Escherichia coli. Furthermore, four other open reading frames could be identified clustered around this HAPMO. It has been suggested that these proteins, including the HAPMO, might be involved in the degradation of 4-hydroxyacetophenone. Substrate specificity studies revealed that a large variety of other arylaliphatic ketones are also converted via Baeyer-Villiger oxidation into the corresponding esters, with preferences for para-substitutions at the aromatic ring. In addition, oxidation of aldehydes and some heteroaromatic compounds was observed. Cycloketones and open-chain ketones were not or poorly accepted, respectively. It was also found that this enzyme oxidizes aromatic ketones such as 3-phenyl-2-butanone with excellent enantioselectivity (E >>100).
منابع مشابه
Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase.
The O2-independent hydroxylase 4-ethylphenol methylenehydroxylase (4EPMH) from Pseudomonas putida JD1 catalysed the complete conversion of 4-ethylphenol into 1-(4-hydroxyphenyl)ethanol together with a small amount of 4-hydroxyacetophenone, but with no formation of the side product 4-vinylphenol reported to be formed when the similar enzyme p-cresol methylhydroxylase (PCMH) catalyses this reacti...
متن کاملConversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeyer-Villiger-type monooxygenase.
An arylketone monooxygenase was purified from Pseudomonas putida JD1 by ion exchange and affinity chromatography. It had the characteristics of a Baeyer-Villiger-type monooxygenase and converted its substrate, 4-hydroxyacetophenone, into 4-hydroxyphenyl acetate with the consumption of one molecule of oxygen and oxidation of one molecule of NADPH per molecule of substrate. The enzyme was a monom...
متن کاملBiocatalytic conversion of avermectin into 4''-oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme.
4''-Oxo-avermectin is a key intermediate in the manufacture of the insecticide emamectin benzoate from the natural product avermectin. Seventeen Streptomyces strains with the ability to oxidize avermectin to 4''-oxo-avermectin in a regioselective manner have been discovered, and the enzymes responsible for this reaction were found to be CYPs (cytochrome P450 mono-oxygenases). The genes for thes...
متن کاملSubstrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also s...
متن کاملProduction of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System
Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 75 10 شماره
صفحات -
تاریخ انتشار 2009